
Container 
Investigations

Cheat Sheet

Distroless Containers 
Distroless containers are a lightweight container image format that removes unnecessary operating system 
components. This minimizes attack surface but also presents challenges for traditional forensic methods.

Limited File System
Distroless containers may lack standard forensic 
artifacts such as /etc/passwd files or interactive 
shells. This absence complicates the ability to 
perform interactive investigations and retrieve 
traditional system information, necessitating 
alternative approaches for forensic analysis.

Lack of Diagnostic Tools
Distroless containers often exclude common 
diagnostic and debugging tools, such as strace, 
lsof, or tcpdump. This absence complicates the
process of real-time analysis and troubleshooting 
within the container, necessitating
external monitoring solutions.

Ephemeral Nature
Distroless containers are typically designed to be 
ephemeral, meaning they can be quickly destroyed 
and recreated. This transient nature makes it difficult 
to capture and preserve forensic evidence over time, 
as traditional methods rely on stable, persistent 
environments for comprehensive analysis.

Containers
Full container images include a full operating system, offering more flexibility and familiarity for forensic 
investigations compared to distroless containers. However, they can also present a larger attack surface.

Richer File System: Standard forensic artifacts and tools such as the passwd file and shells are present 
for traditional forensic analysis.

Diverse Tools: A wider range of forensic tools can be leveraged due to the familiar Linux environment.

Focus on Application Logs: Reliance on application logs and runtime inspection for evidence collection.

•

•
•



Investigation Techniques

Image Inspection
Analyze the container image for vulnerabilities, 
suspicious binaries, or embedded secrets using
tools like docker inspect or Clair.

Runtime Analysis
Utilize container runtime security tools like 
Azure Container Insights or Falco to monitor 
container activity for anomalies.

Extracting Application Logs
Leverage log collectors like Fluentd or Logstash 
to capture application logs for analysis.

Debuggers
A separate container with debugging tools can 
sometimes be attached to the target container 
to inspect its runtime state.

Useful commands for investigating containers

Docker-Specific Commands
List containers: docker ps -a
Inspect a container: docker inspect <container_id>
Export container filesystem: docker export <container_id> -o
<container_id>.tar
View container logs: docker logs <container_id>
Check network settings: docker network inspect <network_name>

Kubernetes-Specific Commands
List pods: kubectl get pods --all-namespaces
Describe a pod: kubectl describe pod <pod_name> -n <namespace>
Get pod logs: kubectl logs <pod_name> -n <namespace>
Export pod details: kubectl get pod <pod_name> -n <namespace> -o yaml >
pod_details.yaml
Capture network traffic: kubectl exec -it <pod_name> -n <namespace> --
tcpdump -i eth0 -w /tmp/capture.pcap

Containerd Commands
List containers: ctr -n k8s.io container ls
Inspect a container: ctr -n k8s.io container info <container_id>
Export container filesystem: ctr -n k8s.io snapshot mount <snapshot_id> /mnt
View container logs: journalctl CONTAINER_NAME=<container_name>

Quick Tips for Container DFIR

Understand the Environment

Identify the orchestrator 
(Kubernetes, Docker Swarm, etc.).

Determine the container runtime 
(Docker, containerd, CRI-O, etc.).

Identify where logs and configurations are stored.

Initial Steps

Take snapshots of the running containers 
and their metadata. There are various options
depending on orchestration in use.

Collect configuration files and logs from 
the host and container.

Data Collection

Gather container images and metadata.

Extract logs from containers and orchestrators.

Capture network traffic if possible.

•

•

•

•

•

•
•
•

https://github.com/arminc/clair-scanner
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-overview
https://github.com/falcosecurity/falco/tree/master


Additional Tools

Docker Explorer: A free tool from Google for Container forensics
(https://github.com/google/docker-explorer)

Docker Forensics Toolkit: Numerous scripts for forensicating Docker
(https://github.com/docker-forensics-toolkit/toolkit)

Distroless Forensics Tools: Tools like Distroless Forensics
(https://github.com/GoogleContainerTools/distroless/issues) are under development 
to specifically address the challenges of distroless container forensics.

•

•

•

Remember

Container investigations often require a combination of techniques and tools.

Understanding container technology and the specific container image format is crucial.

Consider incorporating these techniques into your overall Azure incident response plan.

•
•
•

Further Resources

Docker Security documentation (https://docs.docker.com/engine/security/)

Cloud Native Security Foundation (CNCF) Container Security Working Group
(https://www.cncf.io/blog/2023/06/08/5g-deployment-as-simple-as-gitops-thanks-to-fluxcd/)

SANS Institute Cloud Security resources (https://www.sans.org/cloud-security/)

•
•

•

How Cado Can Help

The Cado platform can natively import from a number of systems, including EKS/ECS/GKE/AKS and more generic 
Kubernetes installations. For more, see our blog on Analyzing Docker Images in the Cado Platform.

https://github.com/google/docker-explorer
https://github.com/docker-forensics-toolkit/toolkit
https://github.com/GoogleContainerTools/distroless/issues
https://www.cadosecurity.com/blog/analysing-docker-images-in-the-cado-platform
https://docs.docker.com/engine/security/
https://www.cncf.io/blog/2023/06/08/5g-deployment-as-simple-as-gitops-thanks-to-fluxcd/
https://www.sans.org/cloud-security/



